Wednesday, 9 July 2014

Classification of Metal Forming Processes

Metal forming processes can be classified under two major groups.
  • Bulk Deformation
  • Sheet Metal Working 
    • Sheering
    • Bending
    • Deep Drawing

Forging

Metal forging is a metal forming process that involves applying compressive forces to a work piece to deform it, and create a desired geometric change to the material.
 
The forging process is very important in industrial metal manufacture, particularly in the extensive iron and steel manufacturing industry. A steel forge is often a source of great output and productivity. Work stock is input to the forge, it may be rolled, it may also come directly from cast ingots or continuous castings. The forge will then manufacture steel forgings of desired geometry and specific material properties. These material properties are often greatly improved.
Metal forging is known to produce some of the strongest manufactured parts compared to other metal manufacturing processes, and obviously, is not just limited to iron and steel forging but to other metals as well. Different types of metals will have a different factors involved when forging them, some will be easier to forge than others. Various tests are described latter to determine forging process factors for different materials. Aluminum, magnesium, copper, titanium, and nickel alloys are also commonly forged metals. It is important to understand the principles of manufacturing forged products, including different techniques and basic metal forging design. The following will provide a comprehensive overview of the metal forging process.
Metal forging, specifically, can strengthen the material by sealing cracks and closing empty spaces within the metal. The hot forging process will highly reduce or eliminate inclusions in the forged part by breaking up impurities and redistributing their material throughout the metal work. However, controlling the bulk of impurities in the metal should be a consideration of the earlier casting process. Inclusions can cause stress points in the manufactured product, something to be avoided. Forging a metal will also alter the metal's grain structure with respect to the flow of the material during its deformation, and like other forming processes, can be used to create favorable grain structure in a material greatly increasing the strength of forged parts. For these reasons, metal forging manufacture gives distinct advantages in the mechanical properties of work produced, over that of parts manufactured by other processes such as only casting or machining.
Metal forgings can be small parts, or weigh as much as 700,000 lbs. Products manufactured by forging in modern industry include critical aircraft parts such as landing gear, shafts for jet engines and turbines, structural components for transportation equipment such as automobiles and railroads, crankshafts, levers, gears, connecting rods, hand tools such as chisels, rivets, screws, and bolts to name a few. The manufacture of forging die and the other high costs of setting up an operation make the production of small quantities of forged parts expensive on a price per unit basis. Once set up, however, operation costs for forging manufacture can be relatively low, and many parts of the process may be automated. These factors make manufacturing large quantities of metal forgings economically beneficial.

Hot Vs Cold Die Forging

Classification of Metal Forging Process


Metal Forgeability
Defects in Metal Forging


 
 
 

Metal Forming

Metal forming is a general term for a large group, that includes a wide variety of manufacturing processes. Metal forming processes are characteristic in that the metal being processed is plastically deformed to shape it into a desired geometry. In order to plastically deform a metal, a force must be applied that will exceed the yield strength of the material.

Flow Stress

During a metal forming operation, it is important to know the force and power that will be needed to accomplish the necessary deformation. The stress-strain graph shows us that the more a work piece is deformed plastically, the more stress is needed. The flow stress is the instantaneous value of the force necessary to continue the yielding and flow of the work material at any point during the process. Flow stress can be considered as a function of strain. The flow stress value can be used to analyze what is going on at any particular point in the metal forming process. The maximum flow stress may be a critical measurement in some metal forming operations, since it will specify the force and power requirements for the machinery to perform the process. The force needed at the maximum strain of the material would have to be calculated in order to determine maximum flow stress.

Strain Rate

The strain rate for any particular manufacturing metal forming process is directly related to the speed at which deformation is occurring. A greater rate of deformation of the work piece will mean a higher strain rate. The specific process and the physical action of the equipment being used has a lot to do with strain rate. Strain rate will affect the amount of flow stress. The effect strain rate has on flow stress is dependent upon the metal and the temperature at which the metal is formed. The strain rate with relation to flow stress of a typical metal at different temperatures is shown in figure.

Effect of Temperature in Metal Forming

Properties of a metal change with an increase in temperature. Therefore, the metal will react differently to the same manufacturing operation if it is performed under different temperatures and the manufactured part may posses different properties. For these reasons, it is very important to understand the materials that we use in our manufacturing process. This involves knowing their behavior at various temperature ranges.
There are three basic temperature ranges at which the metal can be formed

Classification of Metal Forming Process

 
 
 



Hot Working Process

Hot working, (or hot forming), is a metal forming process that is carried out at a temperature range that is higher than the recrystallization temperature of the metal being formed. The behavior of the metal is significantly altered, due to the fact that it is above its recrystallization temperature. Utilization of different qualities of the metal at this temperature is the characteristic of hot working.
Although many of these qualities continue to increase with increasing temperature, there are limiting factors that make overly high temperatures undesirable. During most metal forming processes the die is often cold or slightly heated. However, the metal stock for hot working will usually be at a higher temperature relative to the die. In the design of metal forming process, it is critical to consider the flow of metal during the forming of the work. For metal forming manufacturing, in general, the temperature gradient between the die and the work has a large effect on metal flow during the process. The metal nearer to the die surfaces will be cooler than the metal closer to the inside of the part, and cooler metal does not flow as easily. High temperature gradients, within the work, will cause greater differences in flow characteristics of different sections of the metal, these could be problematic. For example, metal flowing significantly faster at the center of the work compared to cooler metal near the die surfaces that is flowing slower, can cause part defects. Higher temperatures are harder to maintain throughout the metal forming process. Work cooling during the process can also result in more metal flow variations. Another consideration with hot forming manufacture, with regard to the temperature at which to form the part, is that the higher the temperature the more reactive the metal is likely to be. Also if a part for a hot working process is too hot then friction, caused during the process, may further increase heat to certain areas causing melting, (not good), in localized sections of the work. In an industrial hot metal working operation, the optimum temperature should be determined according to the material and the specific manufacturing process.
When above its recrystallization temperature a metal has a reduced yield strength, also no strain hardening will occur as the material is plastically deformed. Shaping a metal at the hot working temperature range requires much less force and power than in cold working. Above its recrystallization temperature, a metal also possesses far greater ductility than at its cold worked temperature. The much greater ductility allows for massive shape changes that would not be possible in cold worked parts. The ability to perform these massive shape changes is a very important characteristic of these high temperature metal forming processes.
The work metal will recrystallize, after the process, as the part cools. In general, hot metal forming will close up vacancies and porosity in the metal, break up inclusions and eliminate them by distributing their material throughout the work piece, destroy old weaker cast grain structures and produce a wrought isotropic grain structure in the part. These high temperature forming processes do not strain harden or reduce the ductility of the formed material. Strain hardening of a part may or may not be wanted, depending upon the application. Qualities of hot forming that are considered disadvantageous are poorer surface finish, increased scale and oxides, decarburization, (steels), lower dimensional accuracy, and the need to heat parts. The heating of parts reduces tool life, results in a lower productivity, and a higher energy requirement than in cold working.

Cold Working Process
Selection of Temperature Range for Forming
Friction and Lubrication in Metal Forming
Return back to Forming
Classification of Metal Forming Processes

Cold Working Process

Cold working, (or cold forming), is a metal forming process that is carried out at room temperature or a little above it. In cold working, plastic deformation of the work causes strain hardening as discussed earlier. The yield point of a metal is also higher at the lower temperature range of cold forming. Hence, the force required to shape a part is greater in cold working than for warm working or hot working. At cold working temperatures, the ductility of a metal is limited, and only a certain amount of shape change may be produced. Surface preparation is important in cold forming. Fracture of the material can be a problem, limiting the amount of deformation possible. In fact, some metals will fracture from a small amount of cold forming and must be hot formed.

Advantages

  1. The part will be stronger and harder due to strain hardening.
  2. Cold forming causes directional grain orientation, which can be controlled to produce desired directional strength properties. 
  3. Work manufactured by cold forming can be created with more accurate geometric tolerances and a better surface finish.
  4. Since low temperature metal forming processes do not require the heating of the material, a large amount of energy can be saved and faster production is possible.
  5. Despite the higher force requirements, the total amount of energy expended is much lower in cold working than in hot working.
 

Disadvantage

  1. One main disadvantage of this type of process is a decrease in the ductility of the part's material
Hot Working
Selection of Temperature Range for Forming
Friction and Lubrication in Metal Forming
Return back to Forming
Classification of Metal Forming Processes

Friction and Lubrication in Metal Forming

Metal forming processes are characteristic of high pressures between two contacting surfaces. In hot forming operations, these high pressures are accompanied by extreme temperatures. Friction and die wear are a serious consideration in metal forming manufacturing. A certain amount of friction will be necessary for some metal forming processes, but excessive friction is always undesirable. Friction increases the amount of force required to perform an operation, causes wear on tooling, and can affect metal flow, creating defects in the work.
Where friction is involved, lubricants can usually help. For some metal forming processes and materials no lubrication is used, but for many lubrication is applied to contacting surfaces to reduce friction forces. Lubricants used in industry are different depending upon the type of metal forming process, the temperature at which the operation occurs, and the type of material formed. Lubricants should be effective and not produce any toxic fumes. Lubricants used in manufacturing industry for metal forming processes include, vegetable and mineral oils, soaps, graphite dispensed in grease, water based solutions, solid polymers, wax, and molten glass

Return back to Forming
Classification of Metal Forming Processes
 

Selection of Temperature Range for Metal Forming

Production at each of these temperature ranges has a different set of advantages and disadvantages. Sometimes, qualities that may be undesirable to one process may be desirable to another. Also, many times work will go through several processes. The goal is to design the manufacture of a part in such a way as to best utilize the different qualities to meet or enhance the specifications of the part. To produce a strong part with excellent surface finish, then a cold forming process could be a good choice. However, to produce a part with a high ductility a hot forming process may be best. Sometimes the advantages of both hot forming and cold forming are utilized when a part is manufactured by a series of processes. For example, hot working operations may first be performed on a work piece to achieve large amounts of shape change that would not be possible with cold forming due to strain hardening and limited ductility. Then the last process that completes the manufacture of the part is a cold working operation. This process does not require a significant shape change, since most of the deformation was accomplished by the hot forming process. Having a cold forming process last will finish the shape change, while strengthening the part, giving a good surface finish and highly accurate tolerances

Return back to Forming
Classification of Metal Forming Processes