Production at each of these temperature ranges has a different set of advantages and disadvantages. Sometimes, qualities that may be undesirable to one process may be desirable to another. Also, many times work will go through several processes. The goal is to design the manufacture of a part in such a way as to best utilize the different qualities to meet or enhance the specifications of the part. To produce a strong part with excellent surface finish, then a cold forming process could be a good choice. However, to produce a part with a high ductility a hot forming process may be best. Sometimes the advantages of both hot forming and cold forming are utilized when a part is manufactured by a series of processes. For example, hot working operations may first be performed on a work piece to achieve large amounts of shape change that would not be possible with cold forming due to strain hardening and limited ductility. Then the last process that completes the manufacture of the part is a cold working operation. This process does not require a significant shape change, since most of the deformation was accomplished by the hot forming process. Having a cold forming process last will finish the shape change, while strengthening the part, giving a good surface finish and highly accurate tolerances
Return back to Forming
Classification of Metal Forming Processes
Return back to Forming
Classification of Metal Forming Processes
No comments:
Post a Comment