Wednesday 9 July 2014

Metal Forming

Metal forming is a general term for a large group, that includes a wide variety of manufacturing processes. Metal forming processes are characteristic in that the metal being processed is plastically deformed to shape it into a desired geometry. In order to plastically deform a metal, a force must be applied that will exceed the yield strength of the material.

Flow Stress

During a metal forming operation, it is important to know the force and power that will be needed to accomplish the necessary deformation. The stress-strain graph shows us that the more a work piece is deformed plastically, the more stress is needed. The flow stress is the instantaneous value of the force necessary to continue the yielding and flow of the work material at any point during the process. Flow stress can be considered as a function of strain. The flow stress value can be used to analyze what is going on at any particular point in the metal forming process. The maximum flow stress may be a critical measurement in some metal forming operations, since it will specify the force and power requirements for the machinery to perform the process. The force needed at the maximum strain of the material would have to be calculated in order to determine maximum flow stress.

Strain Rate

The strain rate for any particular manufacturing metal forming process is directly related to the speed at which deformation is occurring. A greater rate of deformation of the work piece will mean a higher strain rate. The specific process and the physical action of the equipment being used has a lot to do with strain rate. Strain rate will affect the amount of flow stress. The effect strain rate has on flow stress is dependent upon the metal and the temperature at which the metal is formed. The strain rate with relation to flow stress of a typical metal at different temperatures is shown in figure.

Effect of Temperature in Metal Forming

Properties of a metal change with an increase in temperature. Therefore, the metal will react differently to the same manufacturing operation if it is performed under different temperatures and the manufactured part may posses different properties. For these reasons, it is very important to understand the materials that we use in our manufacturing process. This involves knowing their behavior at various temperature ranges.
There are three basic temperature ranges at which the metal can be formed

Classification of Metal Forming Process

 
 
 



No comments:

Post a Comment